欢迎访问北京德博生物技术有限公司官方网站!

流式细胞术

流式细胞术概述
流式细胞术(Flow Cytometry)是七十年代发展起来的高科学技术,它集计算机技术、激光技术、流体力学、细胞化学、细胞免疫学于一体,是一种对处在液流中的细胞或 其他生物微粒,以及人工合成微球逐个进行多种物理或生物学特征快速定量分析和分选的技术。它不仅可测量细胞大小、内部颗粒的性状,还可检测细胞表面和细胞 浆抗原、细胞内DNA、RNA含量等,可对群体细胞在单细胞水平上进行分析,在短时间内检测分析大量细胞,并收集、储存和处理数据,进行多参数定量分析; 能够分类收集(分选)某一亚群细胞,分选纯度>95%。
对比起其他技术方法,流式细胞术拥有其明显的特点和优势,因而在血液学、免疫学、肿瘤学、药物学、分子生物学等学科广泛应用。
(1) 快速地細胞分析
(2) 以单一细胞为基础
(3) 定量性荧光分析
(4) 相关性多参数分析
(5) 无需细胞分离步骤
(6) 可分选有关细胞,进行培养或再分析

流式细胞术发展简史

1934年,Moldavan1首次提出了使悬浮的单个血红细胞等流过玻璃毛细管,在亮视野下用显微镜进行计 数,并用光电记录装置计测的设想,在此之前,人们还习惯于测量静止的细胞,因为要使单个细胞顺次流过狭窄管道容易造成较大的细胞和细胞团块的淤阻。 1953年Crosland–Taylor根据雷诺对牛顿流体在圆形管中流动规律的研究认识到:管中轴线流过的鞘液流速越快,载物通过的能力越强,并具有 较强的流体动力聚集作用。于是设计了一个流动室,使待分析的细胞悬浮液都集聚在圆管轴线附近流过,外层包围着鞘液;细胞悬浮液和鞘液都在作层液。这就奠定 了现代流式细胞术中的液流技术基础。
1956年,Coulter在多年研究的基础上利用Coulter效应生产了Coulter 计数器。其基本原理是:使细胞通过一个小孔,只在细胞与悬浮的介质之间存在着导电性上的差异,便会影响小孔道的电阻特性,从而形成电脉冲信号,测量电脉冲 的强度和个数则可获得有关细胞大小和数目方面的信息。1967年Holm等设计了通过汞弧光灯激发荧光染色的细胞,再由光电检测设备计数的装置。1973 年Steinkamp设计了一种利用激光激发双色荧光色素标记的细胞,既能分析计数,又能进行细胞分选的装置。这样就基本完成了现代FCM计数技术的主要 历程。
现代的FCM数据采集和分析技术是从组织化学发源的,其开拓者是Kamentsky。1965年,Kamentsky在组织化学 的基础上提出了两个新设想:(1)细胞的组分是可以用光光度学来定量测定的,即分光光度术可以定量地获得有关细胞组织化学的重要信息。(2)细胞的不同组 分可以同时进行多参数测量,从而可以对细胞进行分类。换句话说,对同一细胞可以同时获得有关不同组分的多方面信息,用作鉴别细胞的依据。 Kamentsky不仅思路敏捷,而且能身体力行。他是第一个把计算机接口接到仪器上并记录分析了多参数数据的人,也是第一个采用了二维直方图来显示和分 析多参数的人。
流式细胞术在细胞化学中的应用的先驱者是Van Dilla和美国的Los Alamos小组。他们在1967年研制出流液束、照明光轴、检测系统光轴三者相互正交的流式细胞计的基础上,首次用荧光Feulgen反应对DNA染色 显示出DNA的活性与荧光之间存在着线性关系,并在DNA的直方图上清楚地显示出细胞周期的各个时相。Gohde 和Dittrich接着把这项技术推向实用,他们用流式细胞术测定细胞周期借以研究细胞药代动力学问题。FCM用于免疫组织化学中的关键是对细胞进行免疫 荧光染色,其它和在细胞化学的应用并没有多大差异。
近20年来,国内外在FCM上都做了不少的研究和应用工作,也取得了不少成果。特别 是随着仪器和方法和日臻完善,人们越来越致力于样品制备、细胞标记、软件开发等方面的工作以扩大FCM的应用领域和使用效果。FCM在免疫组织化学中的应 用也大致差不多,并注重了在临床应用的推广
流式细胞仪
1. 流式细胞仪概述
流 式细胞仪(Flow Cytometer,FCM)是流式细胞术的主要设备。它是通过测量细胞及其他生物颗粒的散射光和标记荧光强度,来快速分析颗粒的物理或化学性质,并可以 对细胞进行分类收集的高精密仪器。流式细胞仪可以高速分析上万个细胞,并能同时从一个细胞中测得多个细胞特征参数,进行定性或定量分析,具有速度快、精度 高、准确性好等特点。




图1:BD公司临床型流式细胞仪FACSCalibur
国内使用的流式细胞仪主要由美国的两个厂家Beckman-Coulte公司(产品如EPICS ALTRA和EPICS XL/XL-MCL)和Becto n-Dickinson公司(产品如FACS Vantage、FACS Calibur 和FACS Canto等)生产。流式细胞仪主要有两三类:(1)临床型(又称小型机、台式机),其特点是仪器的光路调节系统固定,自动化程度高,操作简便,易学易掌 握。(2)综合型(又称大型机、分析型),其特点是分辨率高,可快速将所感兴趣的细胞分选出来,并可以将单个细胞或指定个数的细胞分选到特定的培养孔或培 养板上,同时可选配多种波长和类型的激光器,适用于更灵活的科学研究。(3)新型流式细胞仪,随着激光技术的不断发展,仪器选用多根激光管,多时可同时检 测十几个荧光参数。还可以实现高速分选,速度达到50000个/每秒。通过激光技术与显微拍摄技术的结合,产生了更新的图象流式细胞技术和仪器(如 Amnis公司的ImageStream System),可以得到更多的参数和实验效果,极大地满足了科学研究的需要。

流式细胞仪主要技术指标:
(1)流式细胞仪的分析速度:一般流式细胞仪每秒检测1000~5000个细胞,大型机可达每秒上万个细胞。
(2)流式细胞仪的荧光检测灵敏度:一般能测出单个细胞上<600个荧光分子,两个细胞间的荧光差>5%即可区分。
(3)前向角散射(FSC)光检测灵敏度:前向角散射(FSC)反映被测细胞的大小,一般流式细胞仪能够测量到0.2μm~0.5μm。
(4)流式细胞仪的分辨率:通常用变异系数CV值来表示,,一般流式细胞仪能够达到<2.0%,这也是测量标本前用荧光微球调整仪器时要求必须达到的。
(5)流式细胞仪的分选速度:一般流式细胞仪分选速度>1000个/秒,分选细胞纯度可达99%以上。
2. 流式细胞仪主要构造和工作原理
流动室及液流驱动系统
流式细胞仪主要由以下五部分构成:①流动室及液流驱动系统;②激光光源及光束形成系统;③光学系统;④信号检测与存储、显示、分析系统;⑤细胞分选系统。
流动室(Flow Cell或Flow Chamber)是流式细胞仪的核心部件,流动室由石英玻璃制成,单细胞悬液在细胞流动室里被鞘流液包绕通过流动室内的一定孔径的孔,检测区在该孔的中 心,细胞在此与激光垂直相交,在鞘流液约束下细胞成单行排列依次通过激光检测区。流动室里的鞘液流是一种稳定流动,控制鞘液流的装置是在流体力学理论的指 导下由一系列压力系统、压力感受器组成,只要调整好鞘液压力和标本管压力,鞘液流包绕样品流并使样品流保持在液流的轴线方向,能够保证每个细胞通过激光照 射区的时间相等,从而使激光激发的荧光信息准确无误。
流式细胞仪可配备一根或多根激光管,常用的激光管是氩离子气体激光管,它的发射光波长488nm,此外可配备氦氖离子气体激光管(波长633nm)和/或紫外激光管。
流式细胞仪的主要测定信号荧光是由激发光激发的,荧光信号的强弱与激发光的强度和照射时间相关,激光是一种相干光源,它能提供单波长、高强度、高稳定性的光照,正是能达到这一要求的理想的激发光光源。
在激光光源和流动室之间有两个圆柱形透镜,将激光光源发出的横截面为圆形的激光光束聚焦成横截面较小的椭圆形激光光束(22μm×66μm),在这种椭圆形激光光斑内激光能量成正态分布,使通过激光检测区的细胞受照强度一致。
光学系统和信号检测系统
流 式细胞仪的光学系统由若干组透镜、小孔、滤光片组成,大致可分为流动室前和流动室后两组。流动室前的光学系统由透镜和小孔组成,透镜和小孔(一般为2片透 镜、1个小孔)的主要作用是将激光光源发出的横截面为圆形的激光光束聚焦成横截面较小的椭圆形激光光束,使激光能量成正态分布,使通过激光检测区的细胞受 照强度一致,最大限度的减少杂散光的干扰;流动室后的光学系统主要由多组滤光片组成,滤光片的主要作用是将不同波长的荧光信号送到不同的光电倍增管。滤光 片主要有三类:长通滤片(LP)—只允许特定波长以上的光线通过,短通滤片(SP)—只允许特定波长以下的光线通过,带通滤片(BP)—只允许特定波长的 光线通过,不同组合的滤片可以将不同波长的荧光信号送到不同的光电倍增管(PMT),如接收绿色荧光(FITC)的PMT前面配置的滤光片是LP550和 BP525,接收色橙红色荧光(PE)的PMT前面配置的滤光片是LP600和BP575,接收红色荧光(CY5)的PMT前面配置的滤光片是LP650 和BP675。
图3 流式细胞仪光学系统和信号检测系统示意图
当测定标本在鞘流液约束下细胞成单行排列依次通过激光检测区时产生散射光和荧光信号,散射光分为前向角散射(Forward Scatter, FS)和侧向角散射或90度散射(Side Scatter,SS)。散射光是细胞的物理参数,与细胞样本的制备(如染色)无关;荧光信号也有两种,一种是细胞自发荧光它一般很微弱,一种是细胞样本 经标有特异荧光素的单克隆抗体染色后经激光激发发出的荧光,它是我们要测定的荧光,荧光信号较强,这两种荧光信号的同时存在是我们测定时需要设定阴性对照 的理由,以便从测出的荧光信号中减去细胞自发荧光和抗体非特异结合产生的荧光。
前向角散射(FS)反映被测细胞的大小,它由正对着流动室的光电二极管装置接收并转变为电信号;侧向角散射或90度散射(SS)反映被测细胞的细胞膜、细 胞质、核膜的折射率和细胞内颗粒的性状,它由一个光电倍增管(PMT)接收并转变为电信号,这些电信号存储在流式细胞仪的计算机硬盘或软盘内。
流式细胞仪测定常用的荧光染料有多种,他们分子结构不同,激发光谱和发射光谱也各异,选择荧光染料时必须依据流式细胞仪所配备的激光光源的发射光波长(如 氩离子气体激光管,它的发射光波488nm,氦氖离子气体激光管发射光波长633nm)。488nm激光光源常用的荧光染料有FITC(异硫氰酸荧光 素)、PE(藻红蛋白)、PI(碘化丙啶)、CY5(化青素)、preCP(叶绿素蛋白)、ECD(藻红蛋白-得克萨斯红)等。他们的激发光和发射光波长 分别是:




各种荧光信号由各自的光电倍增管(PMT)接收并转变为电信号后存储在流式细胞仪的计算机硬盘或软盘内.见图光学系统和信号检测系统示意图。
信号存储、显示、分析系统
(一) 信号存储
存储在流式细胞仪的计算机硬盘或软盘内的数据一般是以List mode(列表排队)方式存入的,采用List mode方式有两大优点:①节约内存和磁盘空间 ②易于加工处理分析。
(二)信号显示和分析
由于List mode方式数据缺乏直观性,数据的显示和分析一般采用一维直
方图(图5)、二维点阵图(图6)、等高线图(图7)和密度图(图8)。
1. 单参数数据显示和分析:细胞的每一个单参数测量数据用直方图来显示,图中横坐标表示散射光或荧光信号相对强度值,其单位是道数,可以是线性的,也可以是对 数的;纵坐标表示细胞数。见图5一维直方图,图中横坐标是PE荧光信号相对强度值(对数),纵坐标表示细胞数;根据实验者设定的“门”(直线门),仪器的 计算机就会给出测定值(包括阳性细胞%和平均荧光强度)。
2. 双参数数据显示和分析:细胞的双参数测量数据和细胞数量的关系用一维直方图、二维点阵图、等高线图和密度图显示和分析。如图4的二维点阵图,是正常人外周 血白细胞的前向散射光(FS)和侧向散射光(SS)组成的点阵图,横坐标和纵坐标均是线性的,图中淋巴细胞、单核细胞、粒细胞很明显地分为3群,可以很容 易地圈“门”(Bitmap,无定型门),分析各亚群细胞的数据。图6二维点阵图是细胞的两种荧光(PE-Cy5和Alexa405-A)双参数数据显 示,横坐标代表PE-Cy5,纵坐标代表Alexa405-A,图中已设定适当的“门”(十字门),十字门的D1、D2、D3、D4门分别代表 Alexa405-A单阳性细胞、PE-Cy5和Alexa405-A双阳性细胞、阴性细胞、PE-Cy5单阳性细胞。仪器的计算机就会给出两种荧光测定 值(包括阴性细胞%、两种荧光各自的阳性细胞%、两种荧光的双阳性细胞%、各群细胞的平均荧光强度)。图7和图8分别是测定细胞的两种荧光双参数数据的密 度图和等高线图,横坐标和纵坐标分别代表一种荧光参数,同理只要设定十字门就可得到两种荧光的各种测定值,密度图和等高线图较点阵图更直观。
3.三参数数据显示和分析:细胞的三参数测量数据和细胞数量的关系每两个数据组成一对(三参数测量数据和细胞数量每两个数据可组成6对数据)用一维直方 图、二维点阵图、等高线图和密度图显示和分析。三个荧光数据关系用分光图(prism)表示,分光图可直接给出8个数据(如用ABC代表3种荧光,可有 A+B+C+、A+B+C-、A+B-C-、A-B+C+、A-B+C-、A-B-C+、A+B-C+、A-B-C-)。

图8 密度图
细胞分选系统
如在细胞流动室上装有超声压电晶体,通电后超声压电晶体发生高频震动,可带动细胞流动室高频震动,使细胞流动室喷咀流出的液流束断成一连串均匀的液滴, 每秒钟形成液滴上万个。每个液滴中包含着一个样品细胞,液滴中的细胞在形成液滴前已被测量,如符合预定要求则可被充电,在通过偏转板的高压静电场时向左 或向右偏转被收集在指定容器中,不含细胞液滴或细胞不符合预定要求液滴不被充电亦不发生偏转进入中间废液收集器中,从而实现了分选。分选的详细原理和 操作请有兴趣者参考有关文献。


0512-67414081